Discrete Intra-Agent Dynamics: Statecharts

Nathaniel Osgood MIT 15.879

March 7, 2012

Load Previous Built [& Provided] Model: MinimalistNetworkABMModel

Adding "Color" Variable

Make Oval "Color" property Use Variable

Discrete Agent Dynamics

- Frequently we can represent agent behaviour using as transitioning among a set of mutually exclusive and collectively exhaustive states in a "state chart"
- For a given simple statechart, the agent is in exactly one state at a time
- Fixed transitions between states define possible evolution
- The transitions between states occur instantaneously, based on some condition

Add Entry Point of State chart

Add in "Susceptible" State

Connect with Entry Point

Fill In Code to Color Green when Enter State

Adding in "Infective" State

Set to Color Red when Enter State

Discrete Agent Dynamics: Transitions

- Many transition conditions are possible
 - Timeout: Spending some period of time in the state
 - Fixed rate: Leave state with some fixed change per unit time
 - This is similar to "first order interarrival time", and is conceptually linked to the operation of first-order delays in stock & flow diagrams
 - Variable rate: If desired, we can change the rate over time <u>but</u> <u>Anylogic only "notices" changes when eg agent re-enters the state</u>
 - Message received: We can transition when a message (any message or particular type of message) is received
 - Predicate: Only transition when condition becomes true
- These transitions can be conditionally "routed" via branches
 - Conditions can determine to what destination state a particular transition will travel

Adding Fixed Rate Transition

Tip: Beware Loose Connections

Corrected

Tip: Confirming Transition Connectivity

 Ensure that both UnDiagnosedActiveTB sides of the transition show green circles when connected - Otherwise, may DiagnosedActiveTB appear connected but will actually be disconnected!

Rates & Flows

- Some may have seen fixed rates before in the form of "transition rates" in Compartment models
- Within a Compartment/SD model, a flow out of a stock was commonly set by the multiplication of the
 - State variable (Stock)
 - Some rate of transition
- We use different names for these rates
 - "Transition rates"
 - "Likelihood of transition per Unit Time"
 - Transition (e.g. "infection", "mortality") "hazard"

First Order Delays in Action: Simple SIT Model

Department of Computer Science

Example Fixed Transition Rate/Hazard

Example Fixed Transition Rate/Hazard

Fixed Rates: Transition "Hazards"

- With "fixed rates", we are specifying rates of transitions
- Because we are dealing with the chance that each individual transitions, we don't need to multiply by the number of people at risk
 - Here, there is just 1 person at risk!
- As in Compartment models, these rates can change over time, but the statechart needs to be "made aware" of these changes (see later)
 - Leave & go back into current state (circular transition)
 Trigger "change" event in Agent

Adding Infection Clearance Transition

Run the Model!

Ŵ

Model Presentation

Transition Type: Fixed Residence Time (Timeout)

Example of Processes Associated with Fixed Timeouts

- Aging
- Tightly defined time constants associated with natural history
 - While these may be described as associated with a broad distribution (e.g. with a 1st or 2nd order delay), much of that variability may be due to heterogeneity
 - For a given person, these may be quite specific in duration \Rightarrow Can capture through a timeout

What Happens if this Depends on a Timeout?

- Set the "Infection" transition to Trigger based
 - on a "Timeout"

💷 Properties 🗙 📃 Console	~ □ 🛙
Infection - Transition This w General Name: Infection Show Name Ignore Public Show At Runtime Description Triggered by: Timeout Imeout When Timeout: 100 Occcurs Action: Occcurs traceln(this + "has been infected!") Guard:	ill report transition

• Make the "Timeout" 100

Now run the model, and observe the difference

Hands on Model Use Ahead

Load model: TBv1.alp

Transition Type: Variable Rate

Example Transition Rate/Hazard

Special Elements: Self-Transition (Use if Wish To Have State Register Changing Outtransition rates)

The self-transition will "make the state realize" that the rate associated with any out transition (e.g. this one) has changed

Special Elements: Exit Point

Special Elements: Self-Transition (Use if Wish To Trigger an Action w/o Leaving State)

Parallel Statecharts

- By default, each statechart evolves independently.
- If coupling is desired, can make transitions/action s dependent on state of other statecharts

Comparison with Aggregate Stock & Flows

- As for aggregate stocks & flow, individuals' states are discrete
- Unlike aggregate stocks & flows
 - One state within a given statechart is active at a time
 - For parallel flows (e.g. comorbidities), there is no need for considering all combinations of the possible states
 - We can keep track of how long an individual is in a given state & adjust the transition rate accordingly

Parallel Transitions

• Example recording the residence time in a state (via a stock with unit inflow i.e. just accumulates the time present in that state)

- The residence time in the state determines the transition rate out of that state.
- Transition rates depending on residence time are generally not possible with aggregate models

Load Sample Model: **Predator-Prey Agent Based** (Via "Sample Models" under "Help" Menu)

Advanced Element: Hierarchical States

- The outermost state captures time since born (for natural deaths)
- The middle-state captures time since last ate (for deaths by hunger). [Eating reenters]
- The inner state transition capture hunting frequency & success

statechart

Natural Death Transition

Death By Hunger

(Note that Depends on Time in State - i.e. time Since last ate)

Eating Transition Leaves & Reenters

Middle State

Tips on Statechart Code

- Each State & Transition has an integer index
 - This by accessed via a (static) constant holding the name of state within the statechart class (statechart.StateName)
- To determine length of time spent in state
 Statename.getLocalTime(*StateIndex*)
- To determine current state
 - statechart.getActiveSimpleState()
- To find out if a state (either simple or composite) is currently active
 - statechart.isStateActive(StateIndex)