
Discrete Intra-Agent Dynamics:
Statecharts

Nathaniel Osgood

MIT 15.879

March 7, 2012

Hands on Model Use Ahead

Load Previous Built [& Provided] Model:
MinimalistNetworkABMModel

Adding “Color” Variable

Make sure this is in lower
case!

Fill in the
type and Initial
Value
(watch
for correct
case!!)

This is the name
of a Java class!

Make Oval “Color” property Use Variable

Make sure you
have selected
the Oval by clicking
on it! Make sure you

have selected
the “Dynamic” tab!

Discrete Agent Dynamics

• Frequently we can represent agent behaviour using
as transitioning among a set of mutually exclusive
and collectively exhaustive states in a “state chart”

• For a given simple statechart, the agent is in exactly
one state at a time

• Fixed transitions between states define possible
evolution

• The transitions between states occur
instantaneously, based on some condition

Add Entry Point of State chart

The associated text is the
name of the statechart!

Add in “Susceptible” State

Connect with Entry Point

When this really connects,
The circle should be green
(see tip at end of presentation)

Fill In Code to Color Green when Enter State

Adding in “Infective” State

Set to Color Red when Enter State

Discrete Agent Dynamics: Transitions

• Many transition conditions are possible

• Timeout: Spending some period of time in the state

• Fixed rate: Leave state with some fixed change per unit time
– This is similar to “first order interarrival time”, and is conceptually linked to

the operation of first-order delays in stock & flow diagrams

• Variable rate: If desired, we can change the rate over time – but
Anylogic only “notices” changes when eg agent re-enters the state

• Message received: We can transition when a message (any
message or particular type of message) is received

• Predicate: Only transition when condition becomes true

– These transitions can be conditionally “routed” via
branches

• Conditions can determine to what destination state a particular
transition will travel

Adding Fixed Rate Transition

When this really connects on both
sides, circles should be green

This implies mean time
Susceptible = 100

Tip: Beware Loose Connections

Corrected

Tip: Confirming Transition Connectivity

• Ensure that both
sides of the
transition show
green circles when
connected

– Otherwise, may
appear connected
but will actually be
disconnected!

Rates & Flows

• Some may have seen fixed rates before – in the
form of “transition rates” in Compartment models

• Within a Compartment/SD model, a flow out of a
stock was commonly set by the multiplication of the

– State variable (Stock)

– Some rate of transition

• We use different names for these rates

– “Transition rates”

– “Likelihood of transition per Unit Time”

– Transition (e.g. “infection”, “mortality”) “hazard”

Department of Computer
Science

First Order Delays in Action:
Simple SIT Model

S I T
New infections New Recovery

Newly Susceptible

Immunity loss

Delay

Per infected contact

infection rate

Mean Contacts

Per Capita

Total Population
Mean Infectious

Contacts Per
Susceptible

Per Susceptible

Incidence Rate

Cumulative

Illnesses
New Illness

Prevalence
Recovery Delay

Initial Population

The rates (hazards) for
these flows are just
the reciprocal of the
corresponding mean
time in stock (delay)

Example Fixed Transition Rate/Hazard

Example Fixed Transition Rate/Hazard

People with
Virulent
Infection Deaths from

Infection

Mean time until
Death

People with Virulent Infection/Mean time until Death
=

People with Virulent Infection*(1/Mean time until Death)
i.e. People with Virulent Infection*Rate

1

𝑀𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑢𝑛𝑡𝑖𝑙 𝐷𝑒𝑎𝑡ℎ

The transition rate
is the reciprocal of
this number i.e.

Fixed Rates: Transition “Hazards”
• With “fixed rates”, we are specifying rates of

transitions

• Because we are dealing with the chance that each
individual transitions, we don’t need to multiply by
the number of people at risk
– Here, there is just 1 person at risk!

• As in Compartment models, these rates can change
over time, but the statechart needs to be “made
aware” of these changes (see later)
– Leave & go back into current state (circular transition)

– Trigger “change” event in Agent

Adding Infection Clearance Transition

Run the Model!

Completing Set-Up

Press this button to start model
execution

Model Presentation

Transition Type: Fixed Residence Time
(Timeout)

Example of Processes
Associated with Fixed Timeouts

• Aging

• Tightly defined time constants associated with
natural history

– While these may be described as associated with
a broad distribution (e.g. with a 1st or 2nd order
delay), much of that variability may be due to
heterogeneity

– For a given person, these may be quite specific in
duration Can capture through a timeout

What Happens if this Depends on a
Timeout?

• Set the “Infection” transition to Trigger based
on a “Timeout”

• Make the “Timeout” 100

This will report
when transition
occurs

Now run the model, and
observe the difference

Hands on Model Use Ahead

Load model: TBv1.alp

Transition Type: Variable Rate

Example Transition Rate/Hazard

Special Elements: Self-Transition
(Use if Wish To Have State Register Changing Out-

transition rates)

The self-transition
 will “make the state
realize” that the rate
associated with any out
transition (e.g. this one)
has changed

Example
Conditional
Transition

The incoming
 transition into
“WhetherPrimaryProgre
ssion” will be
routed to thisoutgoing
transitionif this
condition is true

Special Elements: Exit Point

Special Elements: Self-Transition
(Use if Wish To Trigger an Action w/o Leaving State)

The self-transition
 will invoke this action
when it occurs

Parallel
 Statecharts
• By default, each

statechart
evolves
independently.

• If coupling is
desired, can
make
transitions/action
s dependent on
state of other
statecharts

Comparison with Aggregate Stock & Flows

• As for aggregate stocks & flow, individuals’
states are discrete

• Unlike aggregate stocks & flows

– One state within a given statechart is active at a
time

– For parallel flows (e.g. comorbidities), there is no
need for considering all combinations of the
possible states

– We can keep track of how long an individual is in a
given state & adjust the transition rate accordingly

Parallel
 Transitions
• Example

recording the
residence time
in a state (via
a stock with
unit inflow --
i.e. just
accumulates the
time present in
that state)

• The residence
time in the state
determines
the transition
rate out of that
state.

• Transition rates
depending on
residence time
are generally not
possible with
aggregate
models

Hands on Model Use Ahead

Load Sample Model:
Predator-Prey Agent Based

(Via “Sample Models” under “Help” Menu)

Advanced Element: Hierarchical States

• The outermost state
captures time since born
(for natural deaths)

• The middle-state captures
time since last ate (for deaths
by hunger). [Eating reenters]

• The inner state transition capture
hunting frequency & success

Natural Death Transition

Death By Hunger
(Note that Depends on Time in State – i.e. time Since last ate)

Eating Transition Leaves & Reenters
Middle State

Tips on Statechart Code

• Each State & Transition has an integer index

– This by accessed via a (static) constant holding the
name of state within the statechart class
(statechart.StateName)

• To determine length of time spent in state

– Statename.getLocalTime(StateIndex)

• To determine current state

– statechart.getActiveSimpleState()

• To find out if a state (either simple or composite)
is currently active

– statechart.isStateActive(StateIndex)

